IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On the computation of the integrated products of three spherical harmonics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 7157
(http://iopscience.iop.org/0305-4470/31/34/017)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:11

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/34
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger31 (1998) 7157-7168. Printed in the UK PIl: S0305-4470(98)90622-9

On the computation of the integrated products of three
spherical harmonics

Didier Sbilleau

Equipe de Physique des Surfaces et des Interfaces, Laboratoire de Physique des Atomes, Lasers,
Molécules et Surfaces, UMR CNRS—Univegsit627, Univers#é de Rennes-1, 35042 Rennes—
Cédex, France

Received 12 January 1998, in final form 1 June 1998

Abstract. Gaunt coefficients, the integrated products of three spherical harmonics, are widely
used in several branches of physics. Here, | review the most recent methods to calculate them
efficiently (i.e. with an extensive use of their symmetry properties) and propose a new one
which is faster and remarkably stable in terms of accuracy in the range of energies generally
encountered in electron spectroscopies.

1. Introduction

There has been renewed interest recently in the calculation of the Gaunt coefficients. These
coefficients occur in all kinds of addition theorems (i.e. re-expansion of a wavefield centred
around a given point into a set of wavefields centred on another point of space) covering
a broad range of physics. In fact, all interaction problems in solid state, atomic or nuclear
physics are concerned with these theorems. In condensed matter, more specifically, multiple
scattering theories rely heavily on these addition theorems and those theories are the key
for the understanding and description of all electron spectroscopies which are essential in
the solving of electronic and crystallographic structures. In most of these spectroscopies,
the Gaunt coefficients appear essentially in the expression of the matrix elements of the
propagator. This is typically the case in photoelectron diffraction (PhD), extended x-
ray absorption fine structure (EXAFS), x-ray absorption near edge structure (XANES) or
low-energy electron diffraction (LEED). Here, the use of recurrence relations to calculate
these matrix elements [1-3] or of a separable representation for these matrix elements [4]
almost completely suppresses the need to compute the Gaunt coefficients. This allows
an important gain in speed as the computation of the Gaunt coefficients has always been
regarded as a lengthy process. However, in electron energy loss spectroscopy (EELS), if
most of the scattering problem can be treated without the need to compute these coefficients,
there remains an important part of the process for which the computation of many Gaunt
coefficients is essential [5]. It is therefore important to find out which algorithm would
provide the fastest way to compute these coefficients.

In section 2, | shall give the main definitions in relation to the multiple scattering
theory of electron spectroscopies. | shall then derive the symmetry relations of the Gaunt
coefficients to reduce the amount of these coefficients that have to be calculated in section 3.
In section 4, | shall describe the two fast algorithms that can be found in the literature, and
propose a new one in section 5. Then, | shall consider the orthogonalization property of
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these Gaunt coefficients in section 6. Finally, in section 7, both the speed and the stability
of the algorithms will be tested.

2. Basic definitions

The Gaunt coefficient, as introduced as early as 1929 by Gaunt [6], is the integral of the
product of three spherical harmonics, or three Legendre polynomials. Indeed, there are
many definitions in the literature, all related to each other, and | shall keep here to the one
used in multiple scattering theory which is

G(LaLa|Ly) = / Y, (YL, (R Y] (F) o (1)
where L represents/, m), the angular momentum indices and € sing, do; de;.

In this form, the Gaunt coefficients appear in addition theorems such as those studied
by Danos and Maximon [7]:

i (ko) Ye, (Fo) = Y G, i ji, (kroj) Y, (o)) @)
L
with
G, =4m > it (krij)Yp, (7)) G (LaLs|Ly). (3)
L3

Here, j;(kr) and h}l) (kr) are respectively the spherical Bessel and Hankel of the first
kind functions [10] andr;; is the vector connecting to j. The addition theorem (2) is
the building block of all the multiple scattering theories of electron spectroscopies, and the
coefficientG’szL1 in (2) is nothing else than a matrix element of the free electron propagator
describing the motion of this electron. Note that it corresponds to the structure constants
encountered in band structure theory [8].

From the definition (1), it is possible to identify the selection rules [9], i.e. the values
for which the Gaunt coefficient is always null. This greatly reduces the computational effort
when, as it is often the case, all the Gaunt coefficientd;fand!, limited by a given/max,
have to be calculated. Indeed, the coefficients need only be evaluated for

1 — b <l3< (h+ 1)
Ii+ 1+ 13 even 4)

mz=mi— mp

which limits considerably the amount of computation to be done. The first equation in (4)
is called the triangular condition.

3. Symmetry properties of the Gaunt coefficients

Before looking at the different algorithms to calculate the Gaunt coefficients, we can further
reduce the computing effort by making use of the symmetry properties of these coefficients.
Starting from the well known result [13],

Y[m (7’},)* — (_1)m Yl_m (,;:,) (5)
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and bearing in mind that the result is a real quantity, one can easily verify the following
properties

G(L3La|L1) = G(L2L3|Ly)
G(LaLs|L1) = G(L2L3|Ly) (6)
G(LaLs|L1) = G(L2Ls|Ly)

and
G(L1L3|L2) = (—1)"G(L2L3|Ly)

g ()
G(L2L1|L3) = (=1)™G(L2L3|L1)

and all the possible combinations between them, where | have introdueed, —m).

These symmetry relations can give a strategy for the computing of the Gaunt coefficients:
if L, takes all the possible value&, can be limited to the case whetg € [0, /1] and
my € [—I, 0], following the second equation in (6) and the first one in (7). Moreover, the
calculation need only be performed flar> max(/s, l2), according to the second expression
in (7).

4., State of the art

The first way we could think of to calculate these coefficients would obviously be to perform
effectively the surface integral of the spherical harmonics. Although this can be done,
this is not good practice as the only fast way to calculate the integral would be to use a
Gaussian quadrature type of formula [11], the degree of which would depend on the values
of (I1+12+13). High angular momentum values would then require the use of a high-degree
formula and therefore lead to cumbersome calculations.

Two different algorithms have been used in the literature to overcome this potential
computational bottleneck. An overview of them is given in the following two paragraphs.

4.1. The Clercx and Schram algorithm

In their approach, Clercx and Schram [17] study the addition theorems from a totally
different point of view. They propose an elegant formulation in terms of matrices where
the Gaunt coefficients can be expressed as

G(L2Ls|Ly) = [YLg(M)]L1Lz = <L1|YL3(M)|L2> (8)
where the differential operatdf/[ is defined by its spherical coordinates as
5'71 ,m
Ml?le = m[Nlerl(ll +m1)8p.1-1 + Niyram (la — m1 + D)3, 1, 41]
8m m
M/, = 2L [Ny 1418111 — Nigs 1y +1805.041]

bale N (2 + 1) 9)
_sz.mlfl

M;, 6 =—7
Lila ™ Ny (21 4 1)
+Npr1m—1(n — mp) Iy — my 4+ 2)8p, 141].

Here,N;,, is

_ A7 (I +m)!
Nim _\/(21+1) (L —m)! (10)

[N—1m—1(1 +m) Uy +m1— D)8, 1,1
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andg,, 4, is the Kronecker symbol.
M is related to the spherical harmonics foe 1 by

1
M®==— — cosp
o 9z
1/0 d ;
Mt==Z(—+i— singe?
o (Bx + 8y> - (1)
1
M‘E—(i—|i>—>sm9e ¢
o \ dx y

wherex is an arbitrary complex constant.

Note thatM ™ appears if the azimuthal index is greater than 0 andZ~ if m < 0.

From these definitions, one can demonstrate the following relation
G(L2L3|L1) = A1G(l2 — 2,mp, L3|L1) + A2G(l2 — 1, mp, I3+ 1, ma|Ly)

+A3G(lo — 1, mp, I3 — 1, m3|Ly) (12)
with
_ 8l —1,mp)
gz, m2)

_ gU3+1,my) | U4Am)d —m) 13
A= Gom) and  g(l) = Va+na-1 (13)

_ 8Us, m3)
gz, mp)’
In our casem, varies between-I; and 0 and consequently, this recurrence relation is
not defined fomm, = —I5. In this latter case, the Clercx—Schram (CS) approach leads to

G(lp, —l2, L3|L1) = B1G(lo — 1,1~ 15,13+ 1,m3 — 1|Ly)

3

+BG(l2—1,1—15,13—1,m3—1|L1) (14)
with
22+1 .
Bi=—— 1,1-
1=, 8t L lmms) and 31y |EEmUEm D 15
(2 +1) _ ST @@ -y
By = 21—8(13, m3)
2
This relation is always valid except fat, = —I, = 0 for which the result is trivial.
Therefore, equation (12) combined with equation (14) and the initial value
O,
G(L,,00Lp) = === 16
(L2,00[L1) N (16)

allows us to calculate all the Gaunt coefficients within the chosen computing strategy.

4.2. The Xu algorithm

In a recent article, Xu [18] proposed a new way to evaluate the Gaunt coefficients. He
defines them as the surface integral of three Legendre funcifiis). The starting point

of the method is the expansion of the product of two Legendre functions in series of
Legendre functions:

gmax

PIM(x) PP (x) = Y ag P (x) (17)
q=0
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where
. lh+1—
dmax = MIN (ll, L, B +10> |2m1 + m2|> (18)
and
ag =g(L1, Lo, h + 12— 2q) (19)
with
— (2[3+1) (13—m1—m2)! 1 +
L , L ,l = Pml sz Pml my d ) 20
§(L1, L. ls) 2 (I3 4+ my + my)! [1 h (x) I (x) I3 (x) dx (20)
Obviously, our definition of the Gaunt coefficient writes as
2h+D)@2L+1) | I(ly — (I3 — I
G(L2L3|Ll):(_1)mz 21+1D2+1) |1+ m)l(lo —m) (3 — my + mo)
A (23 + 1) (I1 = m)Y(l2 + ma)V (I3 + my — m2)!
Xg(llv —may, LZv l3) (21)

withlz =11 +1, — 2q.

The advantage of equation (17) is that the Gaunt integral appears as a coefficient in a
series expansion. This gives an easy way to calculate it by identifying terms of equal power
of x on both sides of the equation.

After expressing the Legendre functions in (17) in terms of truncated hypergeometric
functions [10] to make a polynomial expansionidrappear, the matching of the coefficients
of the powers ofx* on both sides of the resulting equation eventually leads to the linear
system of equations:

> Aga = By With 0 < ¢ < gmaxe (22)

Here,a; is a ‘normalized’ Gaunt coefficient given by

~ ax

ay = — (23)
ao
with
@Y+ D)1+ 2 — my — mp)! (24)
o ILN21 4 21) (1 — m) (I — mp)!
and
kmax
By= ) by (25)
k=kmin
wherekmin = max0, ¢ — 252) andkmax = Min(g, 54).
Equation (22) can be rewritten in matrix form as
Aa=B (26)

where A = (4;;) is a lower triangular matrixa = (a;) and B = (B;). Therefore,
the calculation of the ‘normalized’ Gaunt coefficieff, and hence that o6& (LaL3|L1)
following equation (21), consists of solving the linear system (22) or the matrix
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equation (26). Introducing = /1 + I, —m1 — m», the coefficientsd;; andb;; are given by
the recurrence relations:
m—-2i+2)(n—-2i +1)
2021, +2,—2i +1)
2(j—i—1
Aij = A j1 Y - ). i=1
T @ +2,—-2i-2j+1)
(lp—mp—204+2j+2)(lo—my—2i +2j + 1) o
bij = —bi_1 ; ; ; ; J <1
20— )2y —2i +2j+ 1)
(ll—m1—2i+2)(ll—m1—2i+1)
20211 —2i +1)

Note that in this algorithm, the recurrence is igronly.

Ajo=—Ai_10

(27)

bii =—bi_1;1

5. A Cruzan algorithm based on the Schulten—-Gordon recurrences

The first step to devise the new algorithm is to start from an alternative definition of the
Gaunt coefficient, which was originally introduced by Cruzan [12]:

(211 + 1)(212 + 1)(2]3 + 1) 11 lz 13 ll lz 13
A 0 0 0 —miy mp ms3 ’
(28)
This formulation requires the computation of the Wigngrsymbol [13, 14], and this

is the approach favoured by most physicists.
The most symmetric definition of thej ymbols is that of Racah [14] and gives

G(LzL3|Ly) = (=D™

[ l l —ly—m
(mll o m33)=(—1)’1 Sy tma s, 0A (L, L2 ()T (L1, Lo, La)

x Y DAk + L2 — I — )l — my — k) (2 + ma — k)
k

x(lg =l +my+ k) (z— 11 —ma+ k)" (29)
where A (1, I5, [3) is the so-called triangle coefficient given by

(L= 20)(L — 2)(L — 213)!
with L =11 + 1, + I3 and I'(Ly, Ly, L3) is
[(L1, Ly, L3) = /(l1 + m)! (1 — m)V(l2 +m2) ! (lp — m2)! (I3 + m3)! (I3 — m3)!. (31)

Heres,, o is a Kronecker symbol ankl is a positive integer limited by the fact that all
factorials must be defined. It is clear from the Racah definition of they8nbols that it
cannot be used here as we are looking for a fast evaluation of the Gaunt coefficient: the
summation ovelk is too lengthy a process for this purpose. | will use it, however, as a
time reference.

| propose here an alternative way that keeps the Cruzan form of the Gaunt coefficient.
The idea is to combine this form with a fast computation of thiesgmbols. This can be
achieved with the use of recurrence relations. In this approach, however, one must always
be careful about the stability which is the endemic problem in recursion schemes. The most
common recurrences such as those that can be found in the standard textbooks [13, 15] are
unsuitable to the problem as they deal with a half-integer step or mix-up incrementation in
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[ and inm. There is one recurrence relation, however, that is particularly adapted to our
problem. It was derived by Schulten and Gordon [16] and reads as

i L Iz+1 i I 1
13A(13+1)<m1l mzz 3m3 >+B(l3)<mll m22 m33>

la Is— 1) ~0 32)

Iy
+(s+DA(s) <m1 m,  ms
with
Al = \JIB = (1 — 192y + 1o+ 17 — BB\ iE — 3
B(l3) = —(23+ D[I1(l1 + Dymz — I2(I2 + Dm3z — I3(l3 + L) (mo — my)].

The computation of the coefficie® can be further simplified by noting that it admits
a simple recurrence relation:

(33)

B(l3) ]
B(lz—1)=@3—1) | ———— — 23(may —my) | . 34
(Iz—1) = (2 )|:(2]3+1) 3(m2 1) (34)
The calculation of the otherj3arising in the expression of the Gaunt coefficient is much
simpler as we have now; = m, = mz = 0. Furthermore, this 8symbol is non-zero only

if I1 + 1o+ I3 is even. In this case, it is straightforward to show that

ll 12 13—2 _ K(l3) ll 12 13
(0 0 0 >_K(l3—1)x<0 0 o) (35)
with
K () = 1% — (1 — 122+ 1z + 12 — 1. (36)

Note thatK (I3 — 1) is never zero due to the fact thigte [|l1 — [5], 1 + L2].

Combined with the Cruzan formula and the symmetry relations, we now have a fast way
to compute the Gaunt coefficients, using a downward recurrence startingswith, + /3
as in this case the;3symbol has a well known expression [13]:

( ll 12 ll + ZZ) — (_1)[17127M3

my  ma mg3

\/ @IV 2) (11 + Lo + ma)!(I1 + Io — m3)! -

21+ 2L+ DV + m)V (L — m) (o + mo)! (I — my)! '

In their original paper, Schulten and Gordon [16] proposed to combine the forward
and downward recurrences together to ensure the stability. This is certainly necessary in
nuclear physics where the energies dealt with imply the use of valuewell above 100.

In our case however, i.e. electron spectroscopies, where the maximuim afmost never
greater than 30, the downward recurrence is sufficient as will be demonstrated in a following
section.

6. Testing of the stability by means of the orthogonalization of the Gaunt coefficients

As very few Gaunt coefficients have an analytical expression, it is necessary to devise a test
that could give some information on the stability of the various algorithms. Orthogonality
properties can be used for this purpose. They are well known and can prove very useful
for Wigner's 3j symbols [14]. Most of these properties cannot be used for the Gaunt
coefficients, as they rely on summations over indices that are not compatible with the
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construction of these coefficients (such as sums éyandms). One of them, however,
can be used here. It writes as

I l l l l L
D> @s+1) (mll 23 ) ( o2 ) = 015,14 8m3,m; 0 (111213) (38)

/
mams myp m3 mi mp m3

where§(l1lol3) = 1 if I, I, andl3 satisfy the triangular condition. Using (28) it can be
transformed as

\/ 47 (205 + 1) 1

> G(LaLs|L)G(LoL5|L1) = 81, 138mamy- (39)

my,mp

2+ 1022+ 1) G0, 1501110)

This relation is important, both from a theoretical point of view (to simplify equations)
and for computational purposes (as a direct test of the accuracy of the different algorithms).
It will therefore be used in section 7.

Similarly, starting from the less known relation [14]

W @+ D@34+ (4 b )
00 0) =0 (40)
LSy s+ D) — 11+ 1)
with the two conditions on
[+ l odd
+ 2+ 13 (41)
=D <I< U1+ 1)
we have
(I1+12)
47 (21 1)(2 1
mEh D@+ G0 150100 = 0 (42)
W\ @+ Dlials + 1) — 1 + 1]

with the same two conditions.

7. Comparison of the different algorithms

| have tested these three algorithms both in speed and stability. For this purpose, | calculated
all the values ofG(L,L3|L1) for [; and/, limited by /max As a time reference, | used a code
based on the Cruzan—Racah (CR) expression ((28) and (29)) and another one calculating the
Gaunt coefficients by integrating the spherical harmonics over the surface of a unit sphere
according to the definition (1). In the latter, the surface integration was performed using a
gaussian quadrature method [11] based on the 29 degree Lebedev formula [19] coded by
Foulis [20]. In this approach, the range @f, I», I3) is limited by the degree of the formula,

the validity being restricted té + I, + I3 < 29 in the present case. As we know that the
upper value ofi3 is (I3 + I), we deduce that the Lebedev formula cannot be used in the
present tests folyax > 7.

It is noteworthy that the two algorithms used as a time reference differ considerably from
the three other ones in their structure: they allow the calculation of each Gaunt coefficient
independently from the others while the other ones rely, in one way or another, on recurrence
relations. Therefore, the faster of the two could well be used when a systematic calculation
of all the Gaunt coefficients is not necessary. Note also that if the CS and the Cruzan—
Schulten—Gordon (CSG) algorithms use extensively recurrence relations, the Xu one only
uses them fors.

The results of the speed test are plotted in figure 1 for all five algorithms and/fgg a
ranging from 5 to 30 which is the kind of values encountered in electron spectroscopies.
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Figure 1. Speed of the different algorithms as a functiorgfx. The inset shows more detailed
results in themax € [5, 10] range.

The calculations were performed on a Silicon Graphics workstation equipped with a R8000
MIPS processor. All algorithms were coded in double-precision FORTRAN 77. These
results were obtained with the best built-in optimization option available (-O3) but the trends
are similar without any optimization with the sole difference that the deviation between the
CSG and the Xu timings is slightly less important in the latter case.

These plots clearly show the CSG algorithm to be faster in the whole rangg.of
although the speed of the CS algorithm is almost identical in the ripgec 8. Note that
the CS algorithm is faster than the Xu one bely = 10 while it is the contrary above
this value. Note also that for a given curve, the CPU time increases more or less in an
exponential manner and so does the deviation between the curves.

A closer look at the results shows that the stability differs with the algorithm used. This
can be seen on figure 2 where the first digit different between CS/XU, CS/CR and CS/CSG
is plotted as a function ofnax. These values were obtained by using a systematic and
automated search of the discrepanciesdibrthe values of the Gaunt coefficients for the
correspondindmax. In his article, Xu [18] claimed his approach to be stable in contrast to
the CR one which he found unstable. Here, | find the opposite result, with the stability of
the Xu algorithm starting to break down betwedgnx = 10 and/nax = 15. Note that this
breaking down of the stability does not affect all values, far from it: it can only be detected
by the automated search, the values given as examples in his article being calculated within
an excellent accuracy with his algorithm. This can be seen from table 1 where sample
Gaunt coefficients are given. The two middle columns correspond to values listed in Xu's
article and they are perfectly reproduced with his algorithm as they correspond to the initial
valueag corresponding td; = I; + [,. However, a close look at the results obtained with
this algorithm shows that the more we carry down the recurrence and the more the error
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Figure 2. Relative stability of the algorithms as a functionigfy. Here CS has been taken as
a reference disregarding its absolute stability.

Table 1. Examples of values of Gaunt coefficients computed with the different algorithms.
The first column corresponds to the largest discrepancies found between the CS, CR and CSG

algorithms.
G(L2, L3|L1)
L1 = (29, -10 L1 =(20,-1) L1 = (12 -2) L1 =(10,-9)

Algor- Lo = (29, —5) Ly = (20, -1 Ly = (15, 3) Ly = (10, 3)

ithms L3z = (34, —5) L3 = (40, 0) L3 = (5, —5) L3 = (12, —12)

CR 0709445581 68% 103 —0.216322253669 (9484419255 10°1 0.706 297 38513& 101
Ccs Q070944561087% 1073 —0.216322253669 .09484419255% 10~ 0.706 297 385 13& 101
CSG 070944560984k 1073 —0.216322253669 094844192556 101 0.70629738513% 101
Xu 0.50877551718% 10~3 —0.216322253669 (J94844192565 10-1 0.706 297 38513& 101

builds up. As can be seen from figure 2 and table 1, the build-up of the error is very fast
in the Xu algorithm and the error can react 1hen/yq = 30.
An interesting feature of figure 2 is the difference of behaviour between CS/CR and
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Table 2. Accuracy in the calculation of the orthogonalization relation gy = 30.

Algorithm CR CSs CSG XU

Uppervalue for0 ~—-28x10° ~13x10 ~10x1012 ~10x10%®

CS/CSG. The discrepancies between the CS and CR algorithms are almost non-existent
(to the machine accuracy) for low values Qfsx but then start to increase rapidly for

Imax = 15 onwards. In the case of the comparison between the CS and CSG algorithms, the

discrepancies remain more or less constant on the whole range scanned with a good value.
This demonstrates that the downward recurrence strategy | used in the building of the CSG

algorithm is sufficient in the range of interest in electron spectroscopies.

The problem of this accuracy test is that it does not allow us to discrimengteori
between the different algorithms as we do not have many reference values that we know
for sure to be exact within the machine accuracy. The few valuek;pf., and L3 for
which analytical expressions df (L,L3|L1) can be derived are perfectly reproducedally
four algorithms (CR, CS, CSG, XU) up f@gax = 30. All we can deduce from figure 2 and
similar tests performed with CR as the reference is that any of CS, CR and CSG might be
the more stable of the four. In any case, all three can be considered as stable.

A further test that can this time discriminate between the different algorithms one by
one is to use the orthogonalization property (39). As it is based on combinations of Gaunt
coefficients, it will not be able to give an absolute answer, but it can shed some more
light on the problem. Moreover, in some ways, it approximates real calculations where
often, as in addition theorems, it is a combination of Gaunt coefficients (with some other
functions) that we are ultimately interested in. Table 2 gives the results of this test where
the values given by the different algorithms where checked in accuracy against the exact
values (0 and 1). As can be seen, the CS and CSG algorithms lead, more or less, to the
same accuracy while CR is slightly less precise. The XU algorithm gives incorrect results
due to an instability that dominates the results abfyg = 10 and acts as a snowball
effect.

8. Conclusion

| have proposed an alternative algorithm to calculate Gaunt coefficients, based on a
simplification of the Schulten—-Gordon recurrence for the Wignerfssgmbols. It has

been tested in speed and stability with the other three algorithms that can be found in
the literature. The method proposed is the faster of the four and is very stable within
the limit /max = 30. This means that it can be used safely in all problems connected to
electron spectroscopies. In nuclear physics, where much higher energies are involved, its
stability is likely to break down as a downward only recursion scheme has been used in the
devising of the method. In this case, the algorithm has to be stabilized according to the full
Schulten—Gordon prescription.
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