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Abstract. Gaunt coefficients, the integrated products of three spherical harmonics, are widely
used in several branches of physics. Here, I review the most recent methods to calculate them
efficiently (i.e. with an extensive use of their symmetry properties) and propose a new one
which is faster and remarkably stable in terms of accuracy in the range of energies generally
encountered in electron spectroscopies.

1. Introduction

There has been renewed interest recently in the calculation of the Gaunt coefficients. These
coefficients occur in all kinds of addition theorems (i.e. re-expansion of a wavefield centred
around a given point into a set of wavefields centred on another point of space) covering
a broad range of physics. In fact, all interaction problems in solid state, atomic or nuclear
physics are concerned with these theorems. In condensed matter, more specifically, multiple
scattering theories rely heavily on these addition theorems and those theories are the key
for the understanding and description of all electron spectroscopies which are essential in
the solving of electronic and crystallographic structures. In most of these spectroscopies,
the Gaunt coefficients appear essentially in the expression of the matrix elements of the
propagator. This is typically the case in photoelectron diffraction (PhD), extended x-
ray absorption fine structure (EXAFS), x-ray absorption near edge structure (XANES) or
low-energy electron diffraction (LEED). Here, the use of recurrence relations to calculate
these matrix elements [1–3] or of a separable representation for these matrix elements [4]
almost completely suppresses the need to compute the Gaunt coefficients. This allows
an important gain in speed as the computation of the Gaunt coefficients has always been
regarded as a lengthy process. However, in electron energy loss spectroscopy (EELS), if
most of the scattering problem can be treated without the need to compute these coefficients,
there remains an important part of the process for which the computation of many Gaunt
coefficients is essential [5]. It is therefore important to find out which algorithm would
provide the fastest way to compute these coefficients.

In section 2, I shall give the main definitions in relation to the multiple scattering
theory of electron spectroscopies. I shall then derive the symmetry relations of the Gaunt
coefficients to reduce the amount of these coefficients that have to be calculated in section 3.
In section 4, I shall describe the two fast algorithms that can be found in the literature, and
propose a new one in section 5. Then, I shall consider the orthogonalization property of
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these Gaunt coefficients in section 6. Finally, in section 7, both the speed and the stability
of the algorithms will be tested.

2. Basic definitions

The Gaunt coefficient, as introduced as early as 1929 by Gaunt [6], is the integral of the
product of three spherical harmonics, or three Legendre polynomials. Indeed, there are
many definitions in the literature, all related to each other, and I shall keep here to the one
used in multiple scattering theory which is

G(L2L3|L1) =
∫
YL2(r̂)YL3(r̂)Y

∗
L1
(r̂) dr̂ (1)

whereL represents(l, m), the angular momentum indices and dr̂ = sinθr dθr dϕr.
In this form, the Gaunt coefficients appear in addition theorems such as those studied

by Danos and Maximon [7]:

il1h
(1)
l1
(kr0i )YL1(r̂0i ) =

∑
L2

G
ij

L2L1
il2jl2(kr0j )YL2(r̂0j ) (2)

with

G
ij

L2L1
= 4π

∑
L3

il3h
(1)
l3
(krij )YL3(r̂ij )G(L2L3|L1). (3)

Here, jl(kr) and h(1)l (kr) are respectively the spherical Bessel and Hankel of the first
kind functions [10] andErij is the vector connectingi to j . The addition theorem (2) is
the building block of all the multiple scattering theories of electron spectroscopies, and the
coefficientGij

L2L1
in (2) is nothing else than a matrix element of the free electron propagator

describing the motion of this electron. Note that it corresponds to the structure constants
encountered in band structure theory [8].

From the definition (1), it is possible to identify the selection rules [9], i.e. the values
for which the Gaunt coefficient is always null. This greatly reduces the computational effort
when, as it is often the case, all the Gaunt coefficients forl1 and l2 limited by a givenlmax,
have to be calculated. Indeed, the coefficients need only be evaluated for

|l1− l2| 6 l3 6 (l1+ l2)
l1+ l2+ l3 even

m3 = m1−m2

(4)

which limits considerably the amount of computation to be done. The first equation in (4)
is called the triangular condition.

3. Symmetry properties of the Gaunt coefficients

Before looking at the different algorithms to calculate the Gaunt coefficients, we can further
reduce the computing effort by making use of the symmetry properties of these coefficients.
Starting from the well known result [13],

Yml (r̂)
∗ = (−1)mY−ml (r̂) (5)
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and bearing in mind that the result is a real quantity, one can easily verify the following
properties

G(L3L2|L1) = G(L2L3|L1)

G(L2L3|L1) = G(L2L3|L1)

G(L2L3|L1) = G(L2L3|L1)

(6)

and

G(L1L3|L2) = (−1)m3G(L2L3|L1)

G(L2L1|L3) = (−1)m2G(L2L3|L1)
(7)

and all the possible combinations between them, where I have introducedL = (l,−m).
These symmetry relations can give a strategy for the computing of the Gaunt coefficients:

if L1 takes all the possible values,L2 can be limited to the case wherel2 ∈ [0, l1] and
m2 ∈ [−l2, 0], following the second equation in (6) and the first one in (7). Moreover, the
calculation need only be performed forl3 > max(l1, l2), according to the second expression
in (7).

4. State of the art

The first way we could think of to calculate these coefficients would obviously be to perform
effectively the surface integral of the spherical harmonics. Although this can be done,
this is not good practice as the only fast way to calculate the integral would be to use a
Gaussian quadrature type of formula [11], the degree of which would depend on the values
of (l1+ l2+ l3). High angular momentum values would then require the use of a high-degree
formula and therefore lead to cumbersome calculations.

Two different algorithms have been used in the literature to overcome this potential
computational bottleneck. An overview of them is given in the following two paragraphs.

4.1. The Clercx and Schram algorithm

In their approach, Clercx and Schram [17] study the addition theorems from a totally
different point of view. They propose an elegant formulation in terms of matrices where
the Gaunt coefficients can be expressed as

G(L2L3|L1) = [YL3(
EM )]L1L2 = 〈L1|YL3(

EM )|L2〉 (8)

where the differential operatorEM is defined by its spherical coordinates as

M0
L1L2
= δm2,m1

NL1(2l1+ 1)
[Nl1−1,m1(l1+m1)δl2,l1−1+Nl1+1,m1(l1−m1+ 1)δl2,l1+1]

M+
L1L2
= δm2,m1+1

NL1(2l1+ 1)
[Nl1−1,m1+1δl2,l1−1−Nl1+1,m1+1δl2,l1+1]

M−
L1L2
= −δm2,m1−1

NL1(2l1+ 1)
[Nl1−1,m1−1(l1+m1)(l1+m1− 1)δl2,l1−1

+Nl1+1,m1−1(l1−m1+1)(l1−m1+ 2)δl2,l1+1].

(9)

Here,Nl,m is

Nl,m =
√

4π

(2l + 1)

(l +m)!
(l −m)! (10)
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andδl1,l2 is the Kronecker symbol.
EM is related to the spherical harmonics forl = 1 by

M0 ≡ 1

α

∂

∂z
→ cosθ

M+ ≡ 1

α

(
∂

∂x
+ i

∂

∂y

)
→ sinθeiϕ

M− ≡ 1

α

(
∂

∂x
− i

∂

∂y

)
→ sinθe−iϕ

(11)

whereα is an arbitrary complex constant.
Note thatM+ appears if the azimuthal indexm is greater than 0 andM− if m < 0.
From these definitions, one can demonstrate the following relation

G(L2L3|L1) = A1G(l2− 2, m2, L3|L1)+ A2G(l2− 1, m2, l3+ 1, m3|L1)

+A3G(l2− 1, m2, l3− 1, m3|L1) (12)

with

A1 = g(l2− 1, m2)

g(l2, m2)

A2 = g(l3+ 1, m3)

g(l2, m2)
and g(L) =

√
(l +m)(l −m)
(2l + 1)(2l − 1)

A3 = g(l3, m3)

g(l2, m2)
.

(13)

In our case,m2 varies between−l2 and 0 and consequently, this recurrence relation is
not defined form2 = −l2. In this latter case, the Clercx–Schram (CS) approach leads to

G(l2,−l2, L3|L1) = B1G(l2− 1, 1− l2, l3+ 1, m3− 1|L1)

+B2G(l2− 1, 1− l2, l3− 1, m3− 1|L1) (14)

with

B1 = (2l2+ 1)

2l2
g̃(l3+ 1, 1−m3)

B2 = (2l2+ 1)

2l2
g̃(l3, m3)

and g̃(L) =
√
(l +m)(l +m+ 1)

(2l + 1)(2l − 1)
. (15)

This relation is always valid except form2 = −l2 = 0 for which the result is trivial.
Therefore, equation (12) combined with equation (14) and the initial value

G(L2, 00|L1) = δL1,L2√
4π

(16)

allows us to calculate all the Gaunt coefficients within the chosen computing strategy.

4.2. The Xu algorithm

In a recent article, Xu [18] proposed a new way to evaluate the Gaunt coefficients. He
defines them as the surface integral of three Legendre functionsPml (x). The starting point
of the method is the expansion of the product of two Legendre functions in series of
Legendre functions:

P
m1
l1
(x)P

m2
l2
(x) =

qmax∑
q=0

aqP
m1+m2
l1+l2−2q(x) (17)
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where

qmax= min

(
l1, l2,

l1+ l2− |m1+m2|
2

)
(18)

and

aq = ḡ(L1, L2, l1+ l2− 2q) (19)

with

ḡ(L1, L2, l3) = (2l3+ 1)

2

(l3−m1−m2)!

(l3+m1+m2)!

∫ 1

−1
P
m1
l1
(x)P

m2
l2
(x)P

m1+m2
l3

(x) dx. (20)

Obviously, our definition of the Gaunt coefficient writes as

G(L2L3|L1) = (−1)m2

√
(2l1+ 1)(2l2+ 1)

4π(2l3+ 1)

√
(l1+m1)!(l2−m2)!(l3−m1+m2)!

(l1−m1)!(l2+m2)!(l3+m1−m2)!

×ḡ(l1,−m1, L2, l3) (21)

with l3 = l1+ l2− 2q.
The advantage of equation (17) is that the Gaunt integral appears as a coefficient in a

series expansion. This gives an easy way to calculate it by identifying terms of equal power
of x on both sides of the equation.

After expressing the Legendre functions in (17) in terms of truncated hypergeometric
functions [10] to make a polynomial expansion inx appear, the matching of the coefficients
of the powers ofxk on both sides of the resulting equation eventually leads to the linear
system of equations:

q∑
k=0

Aqkãk = Bq with 06 q 6 qmax. (22)

Here, ãk is a ‘normalized’ Gaunt coefficient given by

ãk = ak

a0
(23)

with

a0 = (2l1)!(2l2)!(l1+ l2)!(l1+ l2−m1−m2)!

l1!l2!(2l1+ 2l2)!(l1−m1)!(l2−m2)!
(24)

and

Bq =
kmax∑
k=kmin

bqk (25)

wherekmin = max(0, q − l2−m2
2 ) andkmax= min(q, l1−m1

2 ).
Equation (22) can be rewritten in matrix form as

Aã = B (26)

whereA = (Aij ) is a lower triangular matrix,ã = (ãi) and B = (Bj ). Therefore,
the calculation of the ‘normalized’ Gaunt coefficientãq , and hence that ofG(L2L3|L1)

following equation (21), consists of solving the linear system (22) or the matrix
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equation (26). Introducingn = l1+ l2−m1−m2, the coefficientsAij andbij are given by
the recurrence relations:

Ai0 = −Ai−1,0
(n− 2i + 2)(n− 2i + 1)

2i(2l1+ 2l2− 2i + 1)

Aij = Ai,j−1
2(j − i − 1)

(2l1+ 2l2− 2i − 2j + 1)
j > 1

bij = −bi−1,j
(l2−m2− 2i + 2j + 2)(l2−m2− 2i + 2j + 1)

2(i − j)(2l2− 2i + 2j + 1)
j < i

bii = −bi−1,i−1
(l1−m1− 2i + 2)(l1−m1− 2i + 1)

2i(2l1− 2i + 1)
.

(27)

Note that in this algorithm, the recurrence is onl3 only.

5. A Cruzan algorithm based on the Schulten–Gordon recurrences

The first step to devise the new algorithm is to start from an alternative definition of the
Gaunt coefficient, which was originally introduced by Cruzan [12]:

G(L2L3|L1) = (−1)m1

√
(2l1+ 1)(2l2+ 1)(2l3+ 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
−m1 m2 m3

)
.

(28)

This formulation requires the computation of the Wigner 3j symbol [13, 14], and this
is the approach favoured by most physicists.

The most symmetric definition of the 3j symbols is that of Racah [14] and gives(
l1 l2 l3
m1 m2 m3

)
= (−1)l1−l2−m3δm1+m2+m3,01(l1, l2, l3)0(L1, L2, L3)

×
∑
k

[(−1)k][k!(l1+ l2− l3− k)!(l1−m1− k)!(l2+m2− k)!

×(l3− l2+m1+ k)!(l3− l1−m2+ k)!]−1 (29)

where1(l1, l2, l3) is the so-called triangle coefficient given by

1(l1, l2, l3) =
√
(L− 2l1)!(L− 2l2)!(L− 2l3)!

(L+ 1)!
(30)

with L = l1+ l2+ l3 and0(L1, L2, L3) is

0(L1, L2, L3) =
√
(l1+m1)!(l1−m1)!(l2+m2)!(l2−m2)!(l3+m3)!(l3−m3)!. (31)

Hereδm,0 is a Kronecker symbol andk is a positive integer limited by the fact that all
factorials must be defined. It is clear from the Racah definition of the 3j symbols that it
cannot be used here as we are looking for a fast evaluation of the Gaunt coefficient: the
summation overk is too lengthy a process for this purpose. I will use it, however, as a
time reference.

I propose here an alternative way that keeps the Cruzan form of the Gaunt coefficient.
The idea is to combine this form with a fast computation of the 3j symbols. This can be
achieved with the use of recurrence relations. In this approach, however, one must always
be careful about the stability which is the endemic problem in recursion schemes. The most
common recurrences such as those that can be found in the standard textbooks [13, 15] are
unsuitable to the problem as they deal with a half-integer step or mix-up incrementation in
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l and inm. There is one recurrence relation, however, that is particularly adapted to our
problem. It was derived by Schulten and Gordon [16] and reads as

l3A(l3+ 1)

(
l1 l2 l3+ 1
m1 m2 m3

)
+ B(l3)

(
l1 l2 l3
m1 m2 m3

)
+(l3+ 1)A(l3)

(
l1 l2 l3− 1
m1 m2 m3

)
= 0 (32)

with

A(l3) =
√
l23 − (l1− l2)2

√
(l1+ l2+ 1)2− l23

√
l23 −m2

3

B(l3) = −(2l3+ 1)[l1(l1+ 1)m3− l2(l2+ 1)m3− l3(l3+ 1)(m2−m1)].
(33)

The computation of the coefficientB can be further simplified by noting that it admits
a simple recurrence relation:

B(l3− 1) = (2l3− 1)

[
B(l3)

(2l3+ 1)
− 2l3(m2−m1)

]
. (34)

The calculation of the other 3j arising in the expression of the Gaunt coefficient is much
simpler as we have nowm1 = m2 = m3 = 0. Furthermore, this 3j symbol is non-zero only
if l1+ l2+ l3 is even. In this case, it is straightforward to show that(

l1 l2 l3− 2
0 0 0

)
= K(l3)

K(l3− 1)
×
(
l1 l2 l3
0 0 0

)
(35)

with

K(l3) =
√

[l23 − (l1− l2)2][(l1+ l2+ 1)2− l23]. (36)

Note thatK(l3− 1) is never zero due to the fact thatl3 ∈ [|l1− l2|, l1+ l2].
Combined with the Cruzan formula and the symmetry relations, we now have a fast way

to compute the Gaunt coefficients, using a downward recurrence starting withl3 = l2 + l1
as in this case the 3j symbol has a well known expression [13]:(
l1 l2 l1+ l2
m1 m2 m3

)
= (−1)l1−l2−m3

×
√

(2l1)!(2l2)!(l1+ l2+m3)!(l1+ l2−m3)!

(2l1+ 2l2+ 1)!(l1+m1)!(l1−m1)!(l2+m2)!(l2−m2)!
. (37)

In their original paper, Schulten and Gordon [16] proposed to combine the forward
and downward recurrences together to ensure the stability. This is certainly necessary in
nuclear physics where the energies dealt with imply the use of values ofl well above 100.
In our case however, i.e. electron spectroscopies, where the maximum ofl is almost never
greater than 30, the downward recurrence is sufficient as will be demonstrated in a following
section.

6. Testing of the stability by means of the orthogonalization of the Gaunt coefficients

As very few Gaunt coefficients have an analytical expression, it is necessary to devise a test
that could give some information on the stability of the various algorithms. Orthogonality
properties can be used for this purpose. They are well known and can prove very useful
for Wigner’s 3j symbols [14]. Most of these properties cannot be used for the Gaunt
coefficients, as they rely on summations over indices that are not compatible with the



7164 D Sébilleau

construction of these coefficients (such as sums overl3 andm3). One of them, however,
can be used here. It writes as∑
m1,m2

(2l3+ 1)

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l′3
m1 m2 m′3

)
= δl3,l′3δm3,m

′
3
δ(l1l2l3) (38)

whereδ(l1l2l3) = 1 if l1, l2 and l3 satisfy the triangular condition. Using (28) it can be
transformed as√

4π(2l3+ 1)

(2l1+ 1)(2l2+ 1)
× 1

G(l20, l30|l10)

∑
m1,m2

G(L2L3|L1)G(L2L
′
3|L1) = δl3,l′3δm3,m

′
3
. (39)

This relation is important, both from a theoretical point of view (to simplify equations)
and for computational purposes (as a direct test of the accuracy of the different algorithms).
It will therefore be used in section 7.

Similarly, starting from the less known relation [14]

(l1+l2)∑
l3=|l1−l2|

(2l1+ 1)(2l3+ 1)

l3(l3+ 1)− l(l + 1)

(
l1 l2 l3
0 0 0

)2

= 0 (40)

with the two conditions onl

l + l2+ l3 odd

|l1− l2| 6 l 6 (l1+ l2)
(41)

we have
(l1+l2)∑
l3=|l1−l2|

√
4π(2l1+ 1)(2l3+ 1)

(2l2+ 1)[l3(l3+ 1)− l(l + 1)]
G(l20, l30|l10) = 0 (42)

with the same two conditions.

7. Comparison of the different algorithms

I have tested these three algorithms both in speed and stability. For this purpose, I calculated
all the values ofG(L2L3|L1) for l1 andl2 limited by lmax. As a time reference, I used a code
based on the Cruzan–Racah (CR) expression ((28) and (29)) and another one calculating the
Gaunt coefficients by integrating the spherical harmonics over the surface of a unit sphere
according to the definition (1). In the latter, the surface integration was performed using a
gaussian quadrature method [11] based on the 29 degree Lebedev formula [19] coded by
Foulis [20]. In this approach, the range of(l1, l2, l3) is limited by the degree of the formula,
the validity being restricted tol1 + l2 + l3 6 29 in the present case. As we know that the
upper value ofl3 is (l1 + l2), we deduce that the Lebedev formula cannot be used in the
present tests forlmax> 7.

It is noteworthy that the two algorithms used as a time reference differ considerably from
the three other ones in their structure: they allow the calculation of each Gaunt coefficient
independently from the others while the other ones rely, in one way or another, on recurrence
relations. Therefore, the faster of the two could well be used when a systematic calculation
of all the Gaunt coefficients is not necessary. Note also that if the CS and the Cruzan–
Schulten–Gordon (CSG) algorithms use extensively recurrence relations, the Xu one only
uses them forl3.

The results of the speed test are plotted in figure 1 for all five algorithms and for almax

ranging from 5 to 30 which is the kind of values encountered in electron spectroscopies.
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Figure 1. Speed of the different algorithms as a function oflmax. The inset shows more detailed
results in thelmax ∈ [5, 10] range.

The calculations were performed on a Silicon Graphics workstation equipped with a R8000
MIPS processor. All algorithms were coded in double-precision FORTRAN 77. These
results were obtained with the best built-in optimization option available (-O3) but the trends
are similar without any optimization with the sole difference that the deviation between the
CSG and the Xu timings is slightly less important in the latter case.

These plots clearly show the CSG algorithm to be faster in the whole range oflmax,
although the speed of the CS algorithm is almost identical in the rangelmax6 8. Note that
the CS algorithm is faster than the Xu one belowlmax = 10 while it is the contrary above
this value. Note also that for a given curve, the CPU time increases more or less in an
exponential manner and so does the deviation between the curves.

A closer look at the results shows that the stability differs with the algorithm used. This
can be seen on figure 2 where the first digit different between CS/XU, CS/CR and CS/CSG
is plotted as a function oflmax. These values were obtained by using a systematic and
automated search of the discrepancies forall the values of the Gaunt coefficients for the
correspondinglmax. In his article, Xu [18] claimed his approach to be stable in contrast to
the CR one which he found unstable. Here, I find the opposite result, with the stability of
the Xu algorithm starting to break down betweenlmax = 10 andlmax = 15. Note that this
breaking down of the stability does not affect all values, far from it: it can only be detected
by the automated search, the values given as examples in his article being calculated within
an excellent accuracy with his algorithm. This can be seen from table 1 where sample
Gaunt coefficients are given. The two middle columns correspond to values listed in Xu’s
article and they are perfectly reproduced with his algorithm as they correspond to the initial
valuea0 corresponding tol3 = l1 + l2. However, a close look at the results obtained with
this algorithm shows that the more we carry down the recurrence and the more the error
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Figure 2. Relative stability of the algorithms as a function oflmax. Here CS has been taken as
a reference disregarding its absolute stability.

Table 1. Examples of values of Gaunt coefficients computed with the different algorithms.
The first column corresponds to the largest discrepancies found between the CS, CR and CSG
algorithms.

G(L2, L3|L1)

L1 = (29,−10) L1 = (20,−1) L1 = (12,−2) L1 = (10,−9)
Algor- L2 = (29,−5) L2 = (20,−1) L2 = (15, 3) L2 = (10, 3)
ithms L3 = (34,−5) L3 = (40, 0) L3 = (5,−5) L3 = (12,−12)

CR 0.709 445 581 687× 10−3 −0.216 322 253 669 0.794 844 192 552× 10−1 0.706 297 385 138× 10−1

CS 0.709 445 610 873× 10−3 −0.216 322 253 669 0.794 844 192 552× 10−1 0.706 297 385 138× 10−1

CSG 0.709 445 609 841× 10−3 −0.216 322 253 669 0.794 844 192 550× 10−1 0.706 297 385 137× 10−1

Xu 0.508 775 517 187× 10−3 −0.216 322 253 669 0.794 844 192 565× 10−1 0.706 297 385 138× 10−1

builds up. As can be seen from figure 2 and table 1, the build-up of the error is very fast
in the Xu algorithm and the error can reach 106 when lmax= 30.

An interesting feature of figure 2 is the difference of behaviour between CS/CR and
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Table 2. Accuracy in the calculation of the orthogonalization relation forlmax= 30.

Algorithm CR CS CSG XU

Upper value for 0 ∼− 2.8× 10−9 ∼1.3× 10−11 ∼1.0× 10−12 ∼1.0× 1025

CS/CSG. The discrepancies between the CS and CR algorithms are almost non-existent
(to the machine accuracy) for low values oflmax but then start to increase rapidly for
lmax= 15 onwards. In the case of the comparison between the CS and CSG algorithms, the
discrepancies remain more or less constant on the whole range scanned with a good value.
This demonstrates that the downward recurrence strategy I used in the building of the CSG
algorithm is sufficient in the range of interest in electron spectroscopies.

The problem of this accuracy test is that it does not allow us to discriminatea priori
between the different algorithms as we do not have many reference values that we know
for sure to be exact within the machine accuracy. The few values ofL1, L2 andL3 for
which analytical expressions ofG(L2L3|L1) can be derived are perfectly reproduced byall
four algorithms (CR, CS, CSG, XU) up tolmax= 30. All we can deduce from figure 2 and
similar tests performed with CR as the reference is that any of CS, CR and CSG might be
the more stable of the four. In any case, all three can be considered as stable.

A further test that can this time discriminate between the different algorithms one by
one is to use the orthogonalization property (39). As it is based on combinations of Gaunt
coefficients, it will not be able to give an absolute answer, but it can shed some more
light on the problem. Moreover, in some ways, it approximates real calculations where
often, as in addition theorems, it is a combination of Gaunt coefficients (with some other
functions) that we are ultimately interested in. Table 2 gives the results of this test where
the values given by the different algorithms where checked in accuracy against the exact
values (0 and 1). As can be seen, the CS and CSG algorithms lead, more or less, to the
same accuracy while CR is slightly less precise. The XU algorithm gives incorrect results
due to an instability that dominates the results abovelmax = 10 and acts as a snowball
effect.

8. Conclusion

I have proposed an alternative algorithm to calculate Gaunt coefficients, based on a
simplification of the Schulten–Gordon recurrence for the Wigner’s 3j symbols. It has
been tested in speed and stability with the other three algorithms that can be found in
the literature. The method proposed is the faster of the four and is very stable within
the limit lmax = 30. This means that it can be used safely in all problems connected to
electron spectroscopies. In nuclear physics, where much higher energies are involved, its
stability is likely to break down as a downward only recursion scheme has been used in the
devising of the method. In this case, the algorithm has to be stabilized according to the full
Schulten–Gordon prescription.
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